SMART LAB

Publication

Publication

Diffusion tensor and postcontrast T1-weighted imaging radiomics to differentiate the epidermal growth factor receptor mutation status of brain metastases from non-small cell lung cancer
Journal
Neuroradiology
Vol
63
Page
343-352
Author
Yae Won Park, Chansik An, JaeSeong Lee, Kyunghwa Han, Dongmin Choi, Sung Soo Ahn, Hwiyoung Kim, Sung Jun Ahn, Jong Hee Chang, Se Hoon Kim, Seung-Koo Lee
Year
Data-driven Clinical outcome Prediction
Date
2021
File
HW Kim_2021_Neuroradiology.pdf (753.9K) 2회 다운로드 DATE : 2021-03-14 09:22:12
Purpose: To assess whether the radiomic features of diffusion tensor imaging (DTI) and conventional postcontrast T1-weighted
(T1C) images can differentiate the epidermal growth factor receptor (EGFR) mutation status in brain metastases from non-small
cell lung cancer (NSCLC).
Methods: A total of 99 brain metastases in 51 patients who underwent surgery or biopsy with underlying NSCLC and known
EGFR mutation statuses (57 from EGFR wild type, 42 from EGFR mutant) were allocated to the training (57 lesions in 31
patients) and test (42 lesions in 20 patients) sets. Radiomic features (n = 526) were extracted from preoperative MR images
including T1C and DTI. Radiomics classifiers were constructed by combinations of five feature selectors and four machine
learning algorithms. The trained classifiers were validated on the test set, and the classifier performance was assessed by
determining the area under the curve (AUC).
Results: EGFR mutation status showed an overall discordance rate of 12% between the primary tumors and corresponding brain
metastases. The best performing classifier was a combination of the tree-based feature selection and linear discriminant algorithm
and 5 features were selected (1 from ADC, 2 from fractional anisotropy, and 2 from T1C images), resulting in an AUC, accuracy,
sensitivity, and specificity of 0.73, 78.6%, 81.3%, and 76.9% in the test set, respectively.
Conclusions: Radiomics classifiers integrating multiparametric MRI parameters may have potential in differentiating the EGFR
mutation status in brain metastases from NSCLC.